隨機森林為什么比決策樹好 深度神經(jīng)網(wǎng)絡(luò)是否夸張地過擬合了?
深度神經(jīng)網(wǎng)絡(luò)是否夸張地過擬合了?這不可能是一樣的。1. 過度裝配可分為許多情況。一是現(xiàn)在的情況太多了。這種神經(jīng)網(wǎng)絡(luò)能對許多情況給出正確的答案。即使它是過度安裝,你也無法證明它。此外,即使它能工作和排氣
深度神經(jīng)網(wǎng)絡(luò)是否夸張地過擬合了?
這不可能是一樣的。
1. 過度裝配可分為許多情況。一是現(xiàn)在的情況太多了。這種神經(jīng)網(wǎng)絡(luò)能對許多情況給出正確的答案。即使它是過度安裝,你也無法證明它。此外,即使它能工作和排氣,也沒有壞處。
2. 是否過擬合與我們的神經(jīng)網(wǎng)絡(luò)模型和訓(xùn)練集有關(guān)。當(dāng)二者的組合過擬合時,它在訓(xùn)練集上運行良好,在驗證集上也會出現(xiàn)問題。現(xiàn)在有一些方法可以對訓(xùn)練集的數(shù)據(jù)進行預(yù)處理、多次輸入和多次訓(xùn)練。
3. 目前,過度擬合的問題是不可避免的。培訓(xùn)本身就是一種適應(yīng)過程。如果未來在數(shù)學(xué)原理或應(yīng)用這方面有質(zhì)的突破,可能有解決的機會。
機器學(xué)習(xí)算法工程師面試需要做那些準(zhǔn)備?
1. 工業(yè)中的大型模型基本上都是logistic區(qū)域和線性區(qū)域,因此SGD和lbfgs的理解是非常重要的,并行推導(dǎo)對于理解LR是如何并行的是非常重要的
2。其次,常用的機器學(xué)習(xí)算法,如SVM、gbdt、KNN等,應(yīng)該了解其原理,能夠在壓力下快速響應(yīng)。算法的優(yōu)缺點和適應(yīng)場景應(yīng)該基本清楚
3基本算法數(shù)據(jù)結(jié)構(gòu)應(yīng)該熟練,鏈表二叉樹,快速行合并,動態(tài)返回等
以上是我經(jīng)常使用的一些短期指標(biāo)。朋友一定要記住,這三個指標(biāo)一定是短線行情和主題行情。