python中向量怎么表示 Python語言其實(shí)很慢,為什么機(jī)器學(xué)習(xí)這種快速算法步驟通常還是用呢?
Python語言其實(shí)很慢,為什么機(jī)器學(xué)習(xí)這種快速算法步驟通常還是用呢?對(duì)于那些使用了多種開發(fā)語言(Java、C#、nodejs、Erlang)然后轉(zhuǎn)到Python進(jìn)行機(jī)器學(xué)習(xí)的人,我想談?wù)勎业目捶?。?/p>
Python語言其實(shí)很慢,為什么機(jī)器學(xué)習(xí)這種快速算法步驟通常還是用呢?
對(duì)于那些使用了多種開發(fā)語言(Java、C#、nodejs、Erlang)然后轉(zhuǎn)到Python進(jìn)行機(jī)器學(xué)習(xí)的人,我想談?wù)勎业目捶ā?/p>
首先,Python真的很慢嗎?我的回答是真的。非常慢。for循環(huán)比CPP慢兩個(gè)數(shù)量級(jí)。
那么為什么要使用Python呢?如果我們遍歷超過一億個(gè)數(shù)據(jù),兩個(gè)數(shù)量級(jí)的差異是不可接受的。但是,如果我們使用Python來執(zhí)行頂層邏輯并阻塞數(shù)以億計(jì)的數(shù)據(jù),Python只會(huì)循環(huán)十幾次,剩下的就留給CPU和GPU了。所以兩個(gè)數(shù)量級(jí)無關(guān)緊要?一毫秒和100毫秒在整個(gè)系統(tǒng)中并不重要。
Python最大的優(yōu)點(diǎn)是它可以非常優(yōu)雅地將數(shù)據(jù)拋出到高效的C、CUDA中進(jìn)行計(jì)算。Numpy、panda、numba這些優(yōu)秀的開源庫可以非常方便高效地處理海量數(shù)據(jù),借助ZMQ、cell等還可以做分布式計(jì)算,gevent借助epoll系統(tǒng)IO優(yōu)化。因此,它不需要花費(fèi)太多的精力就可以優(yōu)雅高效地完成海量數(shù)據(jù)處理和機(jī)器學(xué)習(xí)任務(wù)。這就是Python如此流行的原因。
好好想想。同樣的性能,代碼只有CPP或Java的三分之一或更少,不是很吸引人嗎?
Python能否進(jìn)行大規(guī)模數(shù)值計(jì)算?
當(dāng)您問這個(gè)問題時(shí),您可能主要懷疑Python的性能。事實(shí)上,Python的許多更好的模塊都是用C語言編寫的,例如,numpy是一個(gè)常用的Python數(shù)值計(jì)算庫,它是用C語言實(shí)現(xiàn)的,而且計(jì)算機(jī)的配置也不像十年前那么低。今年,python掀起了一股依靠人工智能的浪潮。作為人工智能產(chǎn)品開發(fā)中最流行的編程語言,人工智能相關(guān)產(chǎn)品的開發(fā)自然離不開大數(shù)據(jù)的支持,因此Python能否進(jìn)行大規(guī)模的數(shù)值計(jì)算,毋庸置疑。
為什么Python效率這么低,還這么火?
在許多情況下,性能不是瓶頸。大約80%的應(yīng)用程序不需要高性能。