国产成人毛片视频|星空传媒久草视频|欧美激情草久视频|久久久久女女|久操超碰在线播放|亚洲强奸一区二区|五月天丁香社区在线|色婷婷成人丁香网|午夜欧美6666|纯肉无码91视频

全連接神經(jīng)網(wǎng)絡(luò)優(yōu)缺點(diǎn) 是否存在通用的神經(jīng)網(wǎng)絡(luò)模型,可以處理圖像,語(yǔ)音以及NLP?

是否存在通用的神經(jīng)網(wǎng)絡(luò)模型,可以處理圖像,語(yǔ)音以及NLP?對(duì)于目前的深度學(xué)習(xí)模型,雖然深度學(xué)習(xí)的目標(biāo)之一是設(shè)計(jì)能夠處理各種任務(wù)的算法,但是深度學(xué)習(xí)的應(yīng)用還需要一定的專業(yè)化,目前還沒(méi)有通用的神經(jīng)網(wǎng)絡(luò)處理

是否存在通用的神經(jīng)網(wǎng)絡(luò)模型,可以處理圖像,語(yǔ)音以及NLP?

對(duì)于目前的深度學(xué)習(xí)模型,雖然深度學(xué)習(xí)的目標(biāo)之一是設(shè)計(jì)能夠處理各種任務(wù)的算法,但是深度學(xué)習(xí)的應(yīng)用還需要一定的專業(yè)化,目前還沒(méi)有通用的神經(jīng)網(wǎng)絡(luò)處理模型。然而,每一種模式也在相互學(xué)習(xí)、相互融合、共同提高。例如,一些創(chuàng)新可以同時(shí)改進(jìn)卷積神經(jīng)網(wǎng)絡(luò)和遞歸神經(jīng)網(wǎng)絡(luò),如批量標(biāo)準(zhǔn)化和關(guān)注度。一般模型需要在將來(lái)提出。

圖像和視頻處理,計(jì)算機(jī)視覺(jué),最流行的是CNN,卷積神經(jīng)網(wǎng)絡(luò),它的變形和發(fā)展,CNN適合處理空間數(shù)據(jù),廣泛應(yīng)用于計(jì)算機(jī)視覺(jué)領(lǐng)域。例如,alexnet、vggnet、googlenet、RESNET等都有自己的特點(diǎn)。將上述模型應(yīng)用于圖像分類識(shí)別中。在圖像分割、目標(biāo)檢測(cè)等方面,提出了更有針對(duì)性的模型,并得到了廣泛的應(yīng)用。

語(yǔ)音處理,2012年之前,最先進(jìn)的語(yǔ)音識(shí)別系統(tǒng)是隱馬爾可夫模型(HMM)和高斯混合模型(GMM)的結(jié)合。目前最流行的是深度學(xué)習(xí)RNN遞歸神經(jīng)網(wǎng)絡(luò),其長(zhǎng)、短期記憶網(wǎng)絡(luò)LSTM、Gru、雙向RNN、層次RNN等。

除了傳統(tǒng)的自然語(yǔ)言處理方法外,目前的自然語(yǔ)言處理深度學(xué)習(xí)模型也經(jīng)歷了幾個(gè)發(fā)展階段,如基于CNN的模型、基于RNN的模型、基于注意的模型、基于變壓器的模型等。不同的任務(wù)場(chǎng)景有不同的模型和策略來(lái)解決一些問(wèn)題。

卷積神經(jīng)網(wǎng)絡(luò)為什么最后接一個(gè)全連接層?

在基本的CNN網(wǎng)絡(luò)中,全連接層的作用是將圖像特征圖中的特征通過(guò)多個(gè)卷積層和池化層進(jìn)行融合,得到圖像特征的高層含義,然后用它進(jìn)行圖像分類。

在CNN網(wǎng)絡(luò)中,完全連接層將卷積層生成的特征映射映射到具有固定長(zhǎng)度的特征向量(通常是輸入圖像數(shù)據(jù)集中的圖像類別數(shù))。特征向量包含輸入圖像中所有特征的組合信息。該特征向量雖然丟失了圖像的位置信息,但保留了圖像中最具特征的特征,完成了圖像分類的任務(wù)。從圖像分類任務(wù)的角度來(lái)看,計(jì)算機(jī)只需確定圖像的內(nèi)容,計(jì)算輸入圖像的具體類別值(類別概率),輸出最有可能的類別即可完成分類任務(wù)。