keras框架怎么讀 Keras還是TensorFlow,程序員該如何選擇深度學(xué)習(xí)框架?
Keras還是TensorFlow,程序員該如何選擇深度學(xué)習(xí)框架?如果您想用少量的代碼盡快地構(gòu)建和測試神經(jīng)網(wǎng)絡(luò),keras是最快的,而且sequential API和model非常強(qiáng)大。而且keras
Keras還是TensorFlow,程序員該如何選擇深度學(xué)習(xí)框架?
如果您想用少量的代碼盡快地構(gòu)建和測試神經(jīng)網(wǎng)絡(luò),keras是最快的,而且sequential API和model非常強(qiáng)大。而且keras的設(shè)計(jì)非常人性化。以數(shù)據(jù)輸入和輸出為例,與keras的簡單操作相比,tensorflow編譯碼的構(gòu)造過程非常復(fù)雜(尤其對于初學(xué)者來說,大量的記憶過程非常痛苦)。此外,keras將模塊化作為設(shè)計(jì)原則之一,用戶可以根據(jù)自己的需求進(jìn)行組合。如果你只是想快速建立通用模型來實(shí)現(xiàn)你的想法,keras可以是第一選擇。
但是,包裝后,keras將變得非常不靈活,其速度相對較慢。如果高度包裝,上述缺點(diǎn)將更加明顯。除了一些對速度要求較低的工業(yè)應(yīng)用外,由于tensorflow的速度較高,因此會選擇tensorflow
如果您在驗(yàn)證您的想法時,想定義損失函數(shù)而不是使用現(xiàn)有的設(shè)置,與keras相比,tensorflow提供了更大的個性空間。此外,對神經(jīng)網(wǎng)絡(luò)的控制程度將在很大程度上決定對網(wǎng)絡(luò)的理解和優(yōu)化,而keras提供的權(quán)限很少。相反,tensorflow提供了更多的控制權(quán),比如是否訓(xùn)練其中一個變量、操作梯度(以獲得訓(xùn)練進(jìn)度)等等。
盡管它們都提供了深度學(xué)習(xí)模型通常需要的功能,但如果用戶仍然追求一些高階功能選擇,例如研究特殊類型的模型,則需要tensorflow。例如,如果您想加快計(jì)算速度,可以使用tensorflow的thread函數(shù)來實(shí)現(xiàn)與多個線程的相同會話。此外,它還提供了調(diào)試器功能,有助于推斷錯誤和加快操作速度。
全概率和貝葉斯的區(qū)別?
1. 總概率公式:首先,建立一個完整的事件組。事實(shí)上,總概率就是在第一階段已知的情況下找到第二階段。例如,第一階段分為三種類型:A、B和C。然后,在A、B和C中,出現(xiàn)D的概率。最后,求出D的概率
P(D)=P(a)*P(D/a)P(b)*P(D/b)P(c)*P(D/c)。貝葉斯公式應(yīng)稱為逆概率公式,只是為了紀(jì)念貝葉斯的名字?;趯θ怕使降睦斫?,貝葉斯實(shí)際上被稱為第二階段,第一階段,關(guān)鍵是用條件概率公式來做一個大的轉(zhuǎn)變,遵循上面建立的a B C就像D模型一樣,如果P(D)已知,我們就可以求出D在一次發(fā)生下的概率,這就是貝葉斯