三者容斥問(wèn)題3個(gè)公式 三個(gè)集合怎樣取交集?
三個(gè)集合怎樣取交集?首先取兩組求交集,這個(gè)交集和第三組求交集,得到的集合就是集合數(shù)學(xué)求兩平面公式的相交點(diǎn)?這里是已經(jīng)做過(guò)的,因?yàn)槟阍谇笾?,我也做了一個(gè)解答,首先,兩個(gè)平面相交成一條直線,不能說(shuō)相交點(diǎn),
三個(gè)集合怎樣取交集?
首先取兩組求交集,這個(gè)交集和第三組求交集,得到的集合就是集合
數(shù)學(xué)求兩平面公式的相交點(diǎn)?
這里是已經(jīng)做過(guò)的,因?yàn)槟阍谇笾乙沧隽艘粋€(gè)解答,首先,兩個(gè)平面相交成一條直線,不能說(shuō)相交點(diǎn),那么怎么找到這條直線呢?事實(shí)上,給定的兩個(gè)方程可以表示一條直線,但在許多情況下,需要用參數(shù)方程來(lái)表示這條直線。所以用參數(shù)方程來(lái)表示直線非常簡(jiǎn)單:取任意一個(gè)變量作為參數(shù)t,用t來(lái)改變這個(gè)變量,取t為已知數(shù),根據(jù)這兩個(gè)方程解出關(guān)于t的另外兩個(gè)變量,讓z=t,然后3x3y=-3t-24x3y=-t1減去:x=2t3代入:6t93y=-3t-2y=-3t-11/3,所以交線是{(2t3,-3t-11/3,t)| t∈r}
集運(yùn)算:1。交換律a∩B=B∩a∪B=B∪a2。當(dāng)我們研究一個(gè)集時(shí),我們?cè)谘芯恳粋€(gè)集時(shí),我們?cè)谘芯恳粋€(gè)集時(shí),我們?cè)谘芯恳粋€(gè)集時(shí),我們?cè)谘芯恳粋€(gè)集時(shí),我們?cè)谘芯恳粋€(gè)集時(shí),我們?cè)谘芯恳粋€(gè)集的問(wèn)題時(shí),我們會(huì)遇到一個(gè)問(wèn)題的問(wèn)題的問(wèn)題,我們?cè)谘芯恳粋€(gè)集的問(wèn)題時(shí),我們?cè)谘芯恳粋€(gè)集時(shí),我們?cè)谘芯恳粋€(gè)集時(shí),我們?cè)谘芯恳粋€(gè)集時(shí),我們?cè)谘芯恳粋€(gè)集時(shí),我們會(huì)遇到一個(gè)問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題的問(wèn)題集合中的元素?cái)?shù)。我們把有限集合中的元素?cái)?shù)記為card(a)。例如,如果a={a,B,C},那么card(a)=3 card(a∪B)=card(a)card(B)-card(a∩B)card(a∪B∪C)=card(a)card(B)card(C)-card(a∩B)-card(C∩a)card(a∩B∩C)1985年,德國(guó)數(shù)學(xué)家、集合論奠基人坎托談到了單詞集合,并給出了枚舉和描述表達(dá)集合的常用方法。吸收定律a∪(a∩b)=a∩(a∪b)=a補(bǔ)充定律a∪CSA=s a∩CSA=Φ